Two binding partners cooperate to activate the molecular motor Kinesin-1

نویسندگان

  • T. Lynne Blasius
  • Dawen Cai
  • Gloria T. Jih
  • Christopher P. Toret
  • Kristen J. Verhey
چکیده

The regulation of molecular motors is an important cellular problem, as motility in the absence of cargo results in futile adenosine triphosphate hydrolysis. When not transporting cargo, the microtubule (MT)-based motor Kinesin-1 is kept inactive as a result of a folded conformation that allows autoinhibition of the N-terminal motor by the C-terminal tail. The simplest model of Kinesin-1 activation posits that cargo binding to nonmotor regions relieves autoinhibition. In this study, we show that binding of the c-Jun N-terminal kinase-interacting protein 1 (JIP1) cargo protein is not sufficient to activate Kinesin-1. Because two regions of the Kinesin-1 tail are required for autoinhibition, we searched for a second molecule that contributes to activation of the motor. We identified fasciculation and elongation protein zeta1 (FEZ1) as a binding partner of kinesin heavy chain. We show that binding of JIP1 and FEZ1 to Kinesin-1 is sufficient to activate the motor for MT binding and motility. These results provide the first demonstration of the activation of a MT-based motor by cellular binding partners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partners in kinesin activation

Partners in kinesin activation I t takes two to turn on a kinesin, say Blasius et al. on page 11. Kinesin-1 motoring on microtubules requires cargo plus a second binding partner to relieve the motor of its inhibited conformation. On its own, Kinesin-1 is an inactive motor. Inhibition of the solitary motor probably ensures that it is not needlessly burning ATP or clogging up the microtubule road...

متن کامل

Cargo of Kinesin Identified as Jip Scaffolding Proteins and Associated Signaling Molecules

The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway....

متن کامل

Focus Review Coupling viruses to dynein and kinesin-1

It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interact...

متن کامل

The Microtubule-Binding Protein Ensconsin Is an Essential Cofactor of Kinesin-1

Kinesin-1 is a major microtubule motor that drives transport of numerous cellular cargoes toward the plus ends of microtubules. In the cell, kinesin-1 exists primarily in an inactive, autoinhibited state, and motor activation is thought to occur upon binding to cargo through the C terminus. Using RNAi-mediated depletion in Drosophila S2 cells, we demonstrate that kinesin-1 requires ensconsin (M...

متن کامل

Unbinding Simulation of Kinesin’s Neck Linker

Kinesin’s neck linker is known to play a critical role in its nucleotide-dependent motility. However, it remains unclear how the neck linker binds and unbinds on the kinesin motor head as it walks on the microtubule and generates a walking stroke. To elucidate the nature of the interaction between the neck linker and motor head, we performed molecular dynamics simulations in which the neck link...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2007